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Chaotic nucleation of metastable domains
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We describe a cavitation process that consists of chaotic nucleation of metastable domains. It can be
generically observed in spatially extended nonequilibrium systems, whenever they exhibit bistability between
a stationary and an oscillatory state, close to the Andronov homoclinic bifurcation, which leads to the disap-
pearance of the former. In the bistable regime, the modulational instability of the homogenenous oscillations
leads to inhomogenous nucleation of the stationary pH&d€63-651X97)51408-5

PACS numbds): 47.52:+j, 47.20.Ky, 47.27.Cn, 47.27.Sd

Although the phenomenon of bistability occurs in many Uyt Ui+ €UU+U2U+ U+ e,U%+U%=0, (1)
different situations, it has received very little attention in the
context of spatially extended nonequilibrium systems. In thisvheree; and e, measure the effects of the imperfection. In
paper, we analyze the universal properties of a system thatder to analyze the transition in more detail, we study this
exhibits bistability between a homogeneous stationary statene:
and an oscillatory one, close to parameter values where the
oscillation diseappears through an Andronov homaoclinic bi-
furcation. It is one of the simplest bistable systems that has
no equilibrium counterpart, since sustained oscillations are
ruled out at equilibrium. where v(U)=—pu+U? and V=U?/2+aU3%3+U%4 (see

In zero space dimension, one of the generic transitiongig. 3). When the terms of the right-hand side. are set to 0,
from a limit cycle to a fixed point can be generically studiedthis equation becomes a homogeneous dynamical system that
by considering a one parameter family of planar dynamicals a variant of the Van-der-Pol-Duffing equation. It pos-
systems[1]. Varying a typical parametefsee Fig. 1, the sesses a flow similar to that of Fi¢3). The terms on the
limit cycle disappears through a codimension one homoclini¢ight-hand side of Eq(2) represent propagation and diffu-
bifurcation[2], where the frequency of the oscillations van- Sion respectively.
ishes. In the range of parameterdgy<a<ay ,” the homoge-

In one or more space dimensions, the homogeneous osciteous dynamical system possesses three stationary solutions:
latory state can be modulationally unstable. This instabiliyV =0, U=—a/2+A/2, U=—a/2—A/2, respectively
breaks the phase coherence of the oscillations and leads td'@ted A, B, andC (see Fig. 2 whereA=a’®—4. asy=2
form of spatiotemporal disordéB8—6] which acts as an in- Stands for the value af at whichB andC disappear through
trinsic noise. Above a parameter threshold value, this intrin& Saddle node bifurcation ara},=2.121 32 stands for the
sic noise leads to the nucleation of the stationary state. D&/alue at whichv 4=V, (the Maxwell point of the potential

pending upon the relative stability of the stable stationar))-n phase transitior;)terrlminolggy bl h
state (see Fig. 2, and the disordered state, the domains For negativeu, both A andC are stable. Whep. crosses

nucleated either grow or shrink. In the case where the);em’ a Hopf bifurcation rendetd unstable and leads to a

shrink, i.e., when the stationary phase is metastfblea

“chaotic nucleation of the metastable state” is observed in

some parameter range see Fig. Phis provides a simple

example of spatiotemporal intermitten¢8] that has been

observed in a large class of dynamical systems, including th . Z c 2 c
Maxwell-Bloch equations which describe an array of lasers

submitted to an injected signal, a variant of the complex

Ginzburg-Landau equatiof®], reaction-diffusion equations

which describe the pigmentation patterns molluysdy, and

some chemical reactio$1]. All these models have in com- (a) (b) (c)
mon the existence of an Andronov homoclinic bifurcation

for a limit cycle that leads to a fixed point, in the synchro- g 1 phase portrait of a typical second order oscillator that
nous situation, i.e., when spatial effects are suppressed. gypipits bistability between a limit cycle and a fixed point, as a

The particular model we have chosen has been conypical paremeter is varieda) Prior to the Andronov bifurcation,
structed as the unfolding of a degenerate bifurcation: the nokhere are two stable attractors: a fixed paihand a limit cycle
mal form of the Bogdanov-Takens bifurcatiph?] with re-  surounding the unstable focus. (b) At the bifurcation, the limit
flexion symmetry U——U, in the presence of an cycle becomes an homoclinic orbi) After the bifurcation, the
imperfection which preserves the stationary solution. It readsixed pointC becomes a global attractor.

oV
Utt+V(U)Ut+m:Uxx+KUxxtv (2
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FIG. 2. Spatiotemporal record of the chaotic nucleation of the

metastable phasevhite areas FIG. 3. “Potential” V(U) for various values oé.

The Benjamin-Feir instability leads to defect mediated tur-
bulence[14]. The presence of the defects, where the oscilla-
tion vanishes, reduces the mean square value of the fluctua-
tions. This accounts for the parameter shift between the
nucleation transition and the homaoclinic bifurcation. A pre-
thiScise numerical computation of this mean square value allows
us to get a good quantitative estimate of the nucleation
(tjl?reshold.

stable limit cyclel. Whenu increases, the amplitude of this
limit cycle | increaseglike u for small x) until it disap-
pears through the Andronov homoclinic bifurcation for
u=pup. For sligthly greater values of., C becomes the
global attractor of the dynamical system.

Spatially inhomogeneous perturbations modify
simple scenario. First, the homogeneous oscillation albut
becomes unstable. Qualitatively speaking, the presence . . . N
the saddle poins3, in the local phase portrait of the homo- The domalins of the staté (the wh|te ”'aﬁg'e. In Fig. P
geneous dynamical system renders the oscillation soft: i'ep'nce.nucleated, retract almost umfprmly in time with the
its frequency decreases as its amplitude increases. This pro @I00|tyc:0.2;0, for,u~—~0.2_. The existence of an apparent

onstant velocity of a domain wall that separates the homo-

erty conflicts with the spatial coupling, which tends to in- s . ! .

crease its frequency as the wave number of the oscillatiof€Ne0Us stationary solutmih_and the chaotu_:ally oscillating

increases and leads to modulational instabi[ys]. This state needs some explanations. The velocity of the front that
' onnects the turbulent state afidnay be computed by per-

phenomenon can be understood in the following way: clos . . ) .

to the birth of the oscillations{=0), Eq.(2) can be reduced °'™Mind the bifurcation analysis of the weakly unstable front
to the complex Ginzburg-Landau equation for the compleWh'ChfonneCtSA to C, near the value oa whereV 4=V,
amplitude of the homogeneous oscillations, using standar@"d#=0. WhenV ,=V,, the front that connects! to C is

asymptotics methodg, 13] stationary and reads
2 X—
2 1+tan)‘(7p>

A,=puA—(1+ia)|APA+(1+iB)A, (3)

UA-C: 2 ’ (5)

where «=10a%/3—3, B=—1, r=t/2, k has been chosen

equal to the unity for the sake of simplicity and wherep represents the arbitrary position of the domain wall.
For slightly positiveu, this solution is unstable becauge
itself is unstable. As usu@l 6], this instability couples to the
translation degree of freedom of the domain wall, and leads

(4)  toits propagation. Close to the Maxwell condition férand
for =0, the velocity of the perturbated front is found, as a

Note that the homogeneous limit cycle oscillates with a nonsolvability condition, by looking for solutions of E@2) in

zero mean value, which is consistent with the asymmetry ofhe formU(x,t)=U ,-(x—p)+W. One gets

the “potential” V. Whena=0, the Benjamin-Feir criterion

(1+aB>0) for the stability of the homogeneous oscilla- ap

tionsA= \/ue ' *#7 is satisfied. The modulational instability e Ceqt Cheq (6)

occurs fora=1.095. It takes place before the saddle node

bifurcation leading to the appearence of homogeneous solyyhere

tions B andC. Equation(3) generally displays phase or de-

o a L= )
U=Ae'+Ae " —2alA|*+ (A% + A% 2 +--- .

fect turbulenceg14,15. 52

In the following we choose a typical value af=2.08 in Ceq=>(am—a)
the bistable regime such th&t,<V., and we increase the )
parameteru which controls the oscillatory instability. The 5=, 5[ Uac IV
first nucleation events occurs for a parameter value0.12 Cneq:Zf_m|X| Al T oz ﬁ dz
where the limit cycle has already disappeargd € 0.0761). =Uuc
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. ) FIG. 6. Velocity of the fronts as functions qf for a=2.08.
FIG. 4. Plot of the functions4) U c/d9z, (O) |xI% (O)  (A) Velocity of the unstable front that connedigto A, (O) av-

39°VI9U®, eraged velocity of turbulent front.
andW=Axe'' +c.c+(higher-order terms(see Fig. 4. Here Although, this formula does not apply for parameter val-
x represents the most unstable eigenfunction of the fronfes where the nucleation takes place, it gives a correct quali-
solution. It obeys the equatidn(x) x=0, where tative interpretation of the front motion. The front that con-
nectsC to the chaotic oscillation can be approximated, close
#?  (1-i) ) to the core of the interface, as a perturbation of the unstable
L="2 2 Yad2atU.ic3+D] (®  front U_,.c which connectsA to C. This front and its velocity

have been computed numerically by a shooting method al-

. lowing to find a heteroclinic solution of the equation
and dy/dx=0 at the boundariesA represents the complex 9 q

envelop of the oscillations whose dynamics, determined at
next order, is described by a generalization of the complex
Ginzburg Landau equation.

The first termC,, represents the shift in velocity observed
for the domain wall induced by the relative change of the
stability of the statesd and C associated with the “poten-
tial” V. The second terrt,¢,, is associated with the super-
critical instability of the 4 state. Owe to the Benjamin-Feir for
instability [13], A is fluctuating. This term can be split into o
two parts: a constant part defined by its temporal mean valug
(Creq, and a zero mean value fluctuating part.

The constant shift leads to a small correction to the Max
well condition, obviously related to the asymmetry of the
oscillations(see Fig. $. Its behavior as a function ok is
consistent with the symmetr— Ae'¢ andt—t+ ¢ of the
reduced equations.

CUgeet (2= 1)U —cr(U)U o+ %zo. 9
Equation(9) is obtained by looking solutions of EqR) in

the formU(¢), whereé=x—ct.

The velocity of the actual interface can be obtained by a
mula analoguous to Ed6), whereC,, becomes the ve-
city of the unstable fronU 4... Figure 6 shows the differ-
nce between the velocity of the interfade,.. and the ac-
tual front. Close tqu=0, for a finite range of prameter, the
instability is convectivg17]. Consequently, there is no dif-
ference between the two velocities. When the instability be-
comes absolute, the contribution of the instability to the front
motion becomes evident.

The behavior of the solutions when 042.<0.28 in
which the chaotic nucleation of the metastable ph@sis
observed presents many of the characteristics of statistical
properties of spatiotemporal intermittenf] (see Fig. 2
This will be detailed in a forthcoming work. In this regime,
the fraction of “turbulent” stateR decreases from 1.0 to 0.0,
where the metastable phase “percolatésie Fig. 7.

As usual, robust phenomenas, which can be observed
close to a degenerate bifurcation, are also likely to be ob-
served for fully nonlinear systenj49]. It is in particular the
case for the cascade of period doubling bifurcation that can
be captured in the unfolding of a degenerate bifurcation cor-
responding to a triple zero eigenvalue.

0 0000 20000 60000 80000 100000 We have despnbed in this paper a spatiotemporal comp_lex
t state that consists of the nucleation of metastable domains.
The mechanism underlying this deterministic “cavitation

FIG. 5. Position of the interface as a function of the time for process” is intimately related to the modulational instability
different values ofa with ©=0.05.(1) a=2.1205,(2) a=2.1206, of the oscillation induced by the bistability. Close to the
(3) a=2.1207,(4) a=ay=2.1213. “Maxwell point ay,” “robust localized states,” whose na-
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FIG. 7. Transition from turbulent state to stationary stédePlot of the mean turbulent fractidr for a=2.08.(b) Log-log plot of R that
emphasizes a critical exponeni £ uc)?, with 8=0.38+0.02 andu,=0.287+0.01. The box’s width is 100 000, and the interval of time is
over 100.000 units of time.

ture seems to be different from those related to a subcriticatulses[21]. Owing to the existence of an analog of surface

Hopf bifurcation[18], are oberved. Close to the spinodal tension, in two space dimensions, the nucleated domains,
point where the3 and C disappear through a saddle nodeta}k‘? the form of circular bubbles that eventually retract self-

bifurcation, excitable waves are observed. The parameteimilarly in time.

range of their stabilities is particularly interesting. On one \We want to thank J. Lega for useful discussions and a
side, it is bounded by a transition from excitation to oscilla-careful reading of this manuscript. This work has been par-
tion [20] and on the other side, by an instability of the ex- tially supported by the EEC, Contract Nos. CT93-0107 and

itable waves that leads to back emission of propagating@T96-010.
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