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Chaotic nucleation of metastable domains
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~Received 18 November 1996!

We describe a cavitation process that consists of chaotic nucleation of metastable domains. It can be
generically observed in spatially extended nonequilibrium systems, whenever they exhibit bistability between
a stationary and an oscillatory state, close to the Andronov homoclinic bifurcation, which leads to the disap-
pearance of the former. In the bistable regime, the modulational instability of the homogenenous oscillations
leads to inhomogenous nucleation of the stationary phase.@S1063-651X~97!51408-5#

PACS number~s!: 47.52.1j, 47.20.Ky, 47.27.Cn, 47.27.Sd
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Although the phenomenon of bistability occurs in ma
different situations, it has received very little attention in t
context of spatially extended nonequilibrium systems. In t
paper, we analyze the universal properties of a system
exhibits bistability between a homogeneous stationary s
and an oscillatory one, close to parameter values where
oscillation diseappears through an Andronov homoclinic
furcation. It is one of the simplest bistable systems that
no equilibrium counterpart, since sustained oscillations
ruled out at equilibrium.

In zero space dimension, one of the generic transiti
from a limit cycle to a fixed point can be generically studi
by considering a one parameter family of planar dynam
systems@1#. Varying a typical parameter~see Fig. 1!, the
limit cycle disappears through a codimension one homocl
bifurcation @2#, where the frequency of the oscillations va
ishes.

In one or more space dimensions, the homogeneous o
latory state can be modulationally unstable. This instabi
breaks the phase coherence of the oscillations and leads
form of spatiotemporal disorder@3–6# which acts as an in-
trinsic noise. Above a parameter threshold value, this int
sic noise leads to the nucleation of the stationary state.
pending upon the relative stability of the stable station
state ~see Fig. 2!, and the disordered state, the doma
nucleated either grow or shrink. In the case where th
shrink, i.e., when the stationary phase is metastable@7#, a
‘‘chaotic nucleation of the metastable state’’ is observed
some parameter range see Fig. 2!. This provides a simple
example of spatiotemporal intermittency@8# that has been
observed in a large class of dynamical systems, including
Maxwell-Bloch equations which describe an array of las
submitted to an injected signal, a variant of the comp
Ginzburg-Landau equation@9#, reaction-diffusion equations
which describe the pigmentation patterns molluscs@10#, and
some chemical reactions@11#. All these models have in com
mon the existence of an Andronov homoclinic bifurcati
for a limit cycle that leads to a fixed point, in the synchr
nous situation, i.e., when spatial effects are suppressed.

The particular model we have chosen has been c
structed as the unfolding of a degenerate bifurcation: the
mal form of the Bogdanov-Takens bifurcation@12# with re-
flexion symmetry U→2U, in the presence of an
imperfection which preserves the stationary solution. It re
561063-651X/97/56~3!/2359~4!/$10.00
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Utt1m1Ut1e1UUt1U2Ut1m2U1e2U21U350, ~1!

wheree1 ande2 measure the effects of the imperfection. I
order to analyze the transition in more detail, we study th
one:

Utt1n~U !Ut1
]V

]U
5Uxx1kUxxt, ~2!

where n(U)52m1U2 and V5U2/21aU3/31U4/4 ~see
Fig. 3!. When the terms of the right-hand side. are set to
this equation becomes a homogeneous dynamical system
is a variant of the Van-der-Pol–Duffing equation. It po
sesses a flow similar to that of Fig.~3!. The terms on the
right-hand side of Eq.~2! represent propagation and diffu
sion respectively.

In the range of parameter ‘‘aSN,a,aM , ’’ the homoge-
neous dynamical system possesses three stationary solut
U50, U52a/21AD/2, U52a/22AD/2, respectively
notedA, B, and C ~see Fig. 2!, whereD5a224. aSN52
stands for the value ofa at whichB andC disappear through
a saddle node bifurcation andaM52.121 32 stands for the
value at whichVA5VC ~the Maxwell point of the potentialV
in phase transition terminology!.

For negativem, bothA andC are stable. Whenm crosses
zero, a Hopf bifurcation rendersA unstable and leads to a

FIG. 1. Phase portrait of a typical second order oscillator th
exhibits bistability between a limit cycle and a fixed point, as
typical paremeter is varied.~a! Prior to the Andronov bifurcation,
there are two stable attractors: a fixed pointC and a limit cycle
surounding the unstable focusA. ~b! At the bifurcation, the limit
cycle becomes an homoclinic orbit.~c! After the bifurcation, the
fixed pointC becomes a global attractor.
R2359 © 1997 The American Physical Society
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stable limit cyclel . Whenm increases, the amplitude of th
limit cycle l increases~like Am for small m) until it disap-
pears through the Andronov homoclinic bifurcation f
m5mA . For sligthly greater values ofm, C becomes the
global attractor of the dynamical system.

Spatially inhomogeneous perturbations modify th
simple scenario. First, the homogeneous oscillation abouA
becomes unstable. Qualitatively speaking, the presenc
the saddle pointB, in the local phase portrait of the homo
geneous dynamical system renders the oscillation soft:
its frequency decreases as its amplitude increases. This p
erty conflicts with the spatial coupling, which tends to i
crease its frequency as the wave number of the oscilla
increases and leads to modulational instability@4,5#. This
phenomenon can be understood in the following way: cl
to the birth of the oscillations (m.0), Eq.~2! can be reduced
to the complex Ginzburg-Landau equation for the comp
amplitude of the homogeneous oscillations, using stand
asymptotics methods@4,13#

At5mA2~11 ia!uAu2A1~11 ib!Axx, ~3!

where a510a2/323, b521, t5t/2, k has been chose
equal to the unity for the sake of simplicity and

U5Aeit1 Āe2 i t22auAu21
a

3
~A2e2i t1 Ā2e22i t !1••• .

~4!

Note that the homogeneous limit cycle oscillates with a n
zero mean value, which is consistent with the asymmetry
the ‘‘potential’’ V. Whena50, the Benjamin-Feir criterion
(11ab.0) for the stability of the homogeneous oscill
tionsA5Ame2 iamt is satisfied. The modulational instabilit
occurs fora.1.095. It takes place before the saddle no
bifurcation leading to the appearence of homogeneous s
tionsB andC. Equation~3! generally displays phase or de
fect turbulence@14,15#.

In the following we choose a typical value ofa52.08 in
the bistable regime such thatVA,VC , and we increase the
parameterm which controls the oscillatory instability. Th
first nucleation events occurs for a parameter valuem50.12
where the limit cycle has already disappeared (mA50.0761).

FIG. 2. Spatiotemporal record of the chaotic nucleation of
metastable phase~white areas!.
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The Benjamin-Feir instability leads to defect mediated tu
bulence@14#. The presence of the defects, where the oscil
tion vanishes, reduces the mean square value of the fluc
tions. This accounts for the parameter shift between t
nucleation transition and the homoclinic bifurcation. A pre
cise numerical computation of this mean square value allo
us to get a good quantitative estimate of the nucleati
threshold.

The domains of the stateC ~the white triangle in Fig. 2!,
once nucleated, retract almost uniformly in time with th
velocity c.0.210, form.0.2 . The existence of an apparen
constant velocity of a domain wall that separates the hom
geneous stationary solutionC and the chaotically oscillating
state needs some explanations. The velocity of the front t
connects the turbulent state andC may be computed by per-
forming the bifurcation analysis of the weakly unstable fro
which connectsA to C, near the value ofa whereVA5VC
andm.0. WhenVA5VC , the front that connectsA to C is
stationary and reads

UA-C52
A2

2 F11tanhS x2p

2 D G , ~5!

wherep represents the arbitrary position of the domain wa
For slightly positivem, this solution is unstable becauseA
itself is unstable. As usual@16#, this instability couples to the
translation degree of freedom of the domain wall, and lea
to its propagation. Close to the Maxwell condition forV, and
for m.0, the velocity of the perturbated front is found, as
solvability condition, by looking for solutions of Eq.~2! in
the formU(x,t)5UA-C(x2p)1W. One gets

]p

]t
5Ceq1Cneq, ~6!

where

5 Ceq5
5A2

2
~aM2a!

Cneq5
15

4 E
2`

`

uxu2uAu2S ]UA-C
]z D ]3V

]U3U
U5UA-C

dz
~7!

e
FIG. 3. ‘‘Potential’’ V(U) for various values ofa.
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andW5Axeit1c.c.1~higher-order terms! ~see Fig. 4!. Here
x represents the most unstable eigenfunction of the fr
solution. It obeys the equationL(x)x50, where

L5
]2

]x2
2

~12 i !

2
UA-C@2a1UA-C~31 i !# ~8!

and ]x/]x50 at the boundaries.A represents the comple
envelop of the oscillations whose dynamics, determined
next order, is described by a generalization of the comp
Ginzburg Landau equation.

The first termCeq represents the shift in velocity observe
for the domain wall induced by the relative change of t
stability of the statesA and C associated with the ‘‘poten
tial’’ V. The second termCneq, is associated with the supe
critical instability of theA state. Owe to the Benjamin-Fe
instability @13#, A is fluctuating. This term can be split int
two parts: a constant part defined by its temporal mean v
^Cneq&, and a zero mean value fluctuating part.

The constant shift leads to a small correction to the M
well condition, obviously related to the asymmetry of t
oscillations~see Fig. 5!. Its behavior as a function ofA is
consistent with the symmetryA→Aeif and t→t1f of the
reduced equations.

FIG. 4. Plot of the functions (n) ]UA-C /]z, (s ) uxu2, (h)
1
2 ]3V/]U3.

FIG. 5. Position of the interface as a function of the time
different values ofa with m50.05. ~1! a52.1205,~2! a52.1206,
~3! a52.1207,~4! a5aM52.1213.
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Although, this formula does not apply for parameter v
ues where the nucleation takes place, it gives a correct qu
tative interpretation of the front motion. The front that co
nectsC to the chaotic oscillation can be approximated, clo
to the core of the interface, as a perturbation of the unsta
front UA-C which connectsA to C. This front and its velocity
have been computed numerically by a shooting method
lowing to find a heteroclinic solution of the equation

cUjjj1~c221!Ujj2cn~U !Uj1
]V

]U
50. ~9!

Equation~9! is obtained by looking solutions of Eq.~2! in
the formU(j), wherej5x2ct.

The velocity of the actual interface can be obtained b
formula analoguous to Eq.~6!, whereCeq becomes the ve-
locity of the unstable frontUA-C . Figure 6 shows the differ-
ence between the velocity of the interfaceUA-C and the ac-
tual front. Close tom>0, for a finite range of prameter, th
instability is convective@17#. Consequently, there is no dif
ference between the two velocities. When the instability
comes absolute, the contribution of the instability to the fro
motion becomes evident.

The behavior of the solutions when 0.12,m,0.28 in
which the chaotic nucleation of the metastable phaseC is
observed presents many of the characteristics of statis
properties of spatiotemporal intermittency@8# ~see Fig. 2!.
This will be detailed in a forthcoming work. In this regime
the fraction of ‘‘turbulent’’ stateR decreases from 1.0 to 0.0
where the metastable phase ‘‘percolates’’~see Fig. 7!.

As usual, robust phenomenas, which can be obser
close to a degenerate bifurcation, are also likely to be
served for fully nonlinear systems@19#. It is in particular the
case for the cascade of period doubling bifurcation that
be captured in the unfolding of a degenerate bifurcation c
responding to a triple zero eigenvalue.

We have described in this paper a spatiotemporal comp
state that consists of the nucleation of metastable doma
The mechanism underlying this deterministic ‘‘cavitatio
process’’ is intimately related to the modulational instabil
of the oscillation induced by the bistability. Close to th
‘‘Maxwell point aM , ’’ ‘‘robust localized states,’’ whose na

FIG. 6. Velocity of the fronts as functions ofm for a52.08.
(n) Velocity of the unstable front that connectsC to A, (s ) av-
eraged velocity of turbulent front.
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FIG. 7. Transition from turbulent state to stationary state.~a! Plot of the mean turbulent fractionR for a52.08.~b! Log-log plot ofR that
emphasizes a critical exponent (m2mC)b, with b50.3860.02 andmc50.28760.01. The box’s width is 100 000, and the interval of time
over 100.000 units of time.
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ture seems to be different from those related to a subcrit
Hopf bifurcation @18#, are oberved. Close to the spinod
point where theB and C disappear through a saddle no
bifurcation, excitable waves are observed. The param
range of their stabilities is particularly interesting. On o
side, it is bounded by a transition from excitation to oscil
tion @20# and on the other side, by an instability of the e
itable waves that leads to back emission of propaga
.
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pulses@21#. Owing to the existence of an analog of surfa
tension, in two space dimensions, the nucleated doma
take the form of circular bubbles that eventually retract se
similarly in time.

We want to thank J. Lega for useful discussions and
careful reading of this manuscript. This work has been p
tially supported by the EEC, Contract Nos. CT93-0107 a
CT96-010.
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